ID 283. NATURE AND NURTURE: NEONATAL AND SOCIAL RISK PROFILES IN EXTREMELY AND VERY PRETERM BORN CHILDREN AND THE IMPACT ON DEVELOPMENTAL OUTCOMES AT 5.5 YEARS

Doctor Sabrina Twilhaar, Doctor Véronique Pierrat, MSc Laetitia Marchand-Martin, Doctor Valérie Bennhamou, MSc Monique Kaminski, Professor Pierre-Yves Ancel

1 University of Paris, INSERM, Centre of Research in Epidemiology and Statistics, Obstetrical Perinatal and Pediatric Epidemiology Research Team, Paris, France, 2 CHU Lille, Department of Neonatal Medicine, Jeanne de Flandre Hospital, Lille, France, 3 Clinical Investigation Centre P1419, Assistance Publique-Hôpitaux de Paris, Paris, France

BACKGROUND

To identify extremely preterm (EP; <28 weeks’ gestation) and very preterm (VP; 28-31 weeks) born children with an increased risk for neurodevelopmental impairments, research has mostly focused on neonatal characteristics. However, developmental outcomes result from the interplay of biological and environmental factors. Despite this awareness, there has been little research interest in environmental factors to identify high-risk preterm infants. We aimed to address heterogeneity in the EP/VP population by describing environmental/social and neonatal risk profiles in a French population-based cohort and the relation with developmental outcomes at 5.5 years.

METHODS

The sample included 553 EP and 1497 VP children from the population-based EPIPAGE-2 cohort. Latent class analysis was used to distinguish risk groups based on 8 environmental factors (parental place of birth, language, neighborhood deprivation, urbanicity, single motherhood, profession, employment status, parental education level) and 6 neonatal factors (gestational age, small for gestational age, bronchopulmonary dysplasia, late-onset sepsis, brain lesions, necrotizing enterocolitis). Multivariable regression was used to test the relation between environmental and neonatal classes and intelligence (WPPSI-IV), motor skills (MABC-II), and behavior problems (SDQ).

RESULTS

Three environmental/social classes were distinguished in both EP and VP samples (see Figure): low socioeconomic position with parent(s) born outside Europe, low socioeconomic position with both parents born in Metropolitan France, and high socioeconomic position. Based on neonatal characteristics, three classes were distinguished: high risk, moderate risk, and low risk, but probabilities for specific morbidities differed between EP and VP samples (see Figure). Environmental/social class had a large effect on IQ and small effects on motor skills, overall behavior, and externalizing problems in EP and VP children. Neonatal characteristics had small effects on motor skills, overall behavior, and externalizing problems in EP children and small effects on IQ and motor skills in VP children.

CONCLUSION

The EP/VP population is highly heterogeneous in terms of environmental/social and neonatal characteristics and outcomes. By identifying children with similar characteristics we gained more insight in which children are at risk for which difficulties. The findings emphasize that the role of the environment should not be underestimated in the identification of infants at risk for long-term impairments.
Profiles of environmental/social factors (A, C) and neonatal characteristics (B, D) in the extremely (A, B) and very preterm sample (C, D).

Profiles of environmental/social factors (A, C) and neonatal characteristics (B, D) in the extremely (A, B) and very preterm sample (C, D).

None declared
Background: Visual tracking of moving objects requires sustained attention and prediction of the object’s trajectory. We hypothesized that visual tracking performance in infancy has long-term implications for neurodevelopment in very preterm infants.

Methods: Visual tracking was assessed at 4 month’s corrected age in 57 infants with gestational ages 22-31 (mean 28.1) weeks. During the tracking assessment, an object moved back and forth in front of the infant with sinusoidal (predictable) or triangular (abrupt) turns of the direction, while eye and head movements were recorded. Gaze gain, smooth pursuit gain, and timing of gaze to object were analysed. At 6.5 years the children had visual examinations, cognition was assessed with the Wechsler Intelligence Scale for Children (WISC-IV) and attention by the Brown Attention Deficit Disorder (Brown ADD) scale. Univariate and multiple regression analyses were performed and included adjustments for neonatal risk factors: severe brain injury (IVH 3-4/PVL), retinopathy of prematurity stage 3 or more, bronchopulmonary dysplasia, and gestational age. A p-value <0.05 was considered significant.

Results: For both motion patterns, gaze gain was strongly related to all WISC-IV parameters and smooth pursuit gain to full-scale IQ and processing speed. For the sinusoidal pattern, smooth pursuit gain was also significantly related to working memory. Both motion patterns also related to several Brown-ADD parameters. For the sinusoidal motion pattern both timing of gaze to object and gaze gain related most strongly to “Focusing sustaining and shifting attention” (R²=0.17, p=0.004; and R²=0.17, p=0.016, respectively). For the triangular motion pattern, smooth pursuit gain associated to “Regulating alertness, sustaining effort and processing speed” (R²=0.16, p=0.006). A visual acuity <0.8 at 6.5 years was associated with lower full-scale IQ but not to the visual tracking parameters.

Conclusion: The ability of very preterm infants to visually track and attend to a moving object at 4 month’s corrected age is closely related to cognition and attention at 6.5 years.
ID 123. Association of Preterm Birth and Deprivation Together as Risk Factors for Learning Difficulties

Doctor Thomas CW Isaac, Mrs Dawn Odd, Dr Martin Edwards, Dr Mallinath Chakraborty, Professor Sailesh Kotecha, Ms Sarah Kotecha, Dr David Odd

1Children’s Hospital Of Wales, Cardiff, Cardiff, United Kingdom, 2School of Health and Social Wellbeing, University of the West of England, Bristol, UK, 3Regional Neonatal Intensive Care Unit, University Hospital of Wales, Cardiff, UK, 4Centre for Medical Education, School of Medicine, Cardiff University, Cardiff, UK, 5School of Medicine, Cardiff University, Cardiff, UK, 6Division of Population Medicine, Cardiff University, Cardiff, UK

Background

1 in 10 children globally are born preterm leading to a large proportion of morbidity and mortality in children representing a major target for intervention for benefit to public health. Preterm birth is associated with learning difficulties and impaired school performance in later life. Increasing risk of intellectual disability has been demonstrated with increasing social deprivation. We sought to identify if children born preterm to families with higher levels of deprivation are disproportionately more likely to have a learning difficulty.

Methods

Data from the RANOPS (Respiratory And Neurological Outcomes in children born Preterm Study) a cross sectional survey of children in Wales was used to assess the prevalence of learning difficulties, behavioural problems and need for an educational statement by parental report by exposure. The effects of exposures of prematurity (gestation of less than 37 weeks) and deprivation (measured using the Welsh Index of Multiple Deprivation (WIMD)) were reviewed. Logistic regression models adapted for random effects of age at time of the survey were used to examine if gestational age and deprivation impacts interacted after adjustment for possible confounders.

Primary outcome measure was parentally reported learning difficulty. Secondary outcome measures were parentally reported behavioural problems and need for a statement of special educational need.

Ethical approval was given for the original study by the South Wales Ethic Committee.

Results

6691 infants were investigated. Deprivation measured by decile (OR 1.08 (1.03-1.12), adjusted) and prematurity (OR 2.67 (2.02-3.53) adjusted) were both associated with occurrence of learning difficulty. The population attributable risk fraction (PAF) for learning difficulty following preterm birth was 4.89%. There was little evidence a model with interaction between prematurity and deprivation was superior to one without on likelihood ratio testing (p=0.298, adjusted).

Conclusion

Deprivation and preterm birth both have significant associations with learning difficulties. While deprivation does not appear to have potentiated the impact of preterm birth, preterm infants in the most deprived areas...
have the highest risk of learning difficulties with almost 1 in 3 extremely premature born infants with a learning difficulty in the most deprived areas.

<table>
<thead>
<tr>
<th>Neurodevelopmental Measure</th>
<th>Unadjusted model</th>
<th>Adjusted for demographics factors*</th>
<th>Adjusted for demographics* and clinical factors**</th>
<th>Projection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td>P</td>
<td>OR (95% CI)</td>
<td>P</td>
</tr>
<tr>
<td>Learning Disability</td>
<td>N=6691</td>
<td></td>
<td>N=5443</td>
<td>P</td>
</tr>
<tr>
<td>Prematurity</td>
<td>2.52 (2.04-3.12)</td>
<td><0.001</td>
<td>2.64 (2.07-3.37)</td>
<td><0.001</td>
</tr>
<tr>
<td>WMD decile</td>
<td>1.08 (1.04-1.11)</td>
<td><0.001</td>
<td>1.07 (1.03-1.11)</td>
<td>0.001</td>
</tr>
<tr>
<td>Educational Statement</td>
<td>N=3356</td>
<td></td>
<td>N=2594</td>
<td></td>
</tr>
<tr>
<td>Prematurity</td>
<td>2.09 (2.04-4.13)</td>
<td><0.001</td>
<td>2.68 (1.76-4.11)</td>
<td><0.001</td>
</tr>
<tr>
<td>WMD decile</td>
<td>1.09 (1.01-1.15)</td>
<td>0.002</td>
<td>1.11 (1.05-1.19)</td>
<td>0.001</td>
</tr>
<tr>
<td>Behavioural problems</td>
<td>N=6672</td>
<td></td>
<td>N=5429</td>
<td></td>
</tr>
<tr>
<td>Prematurity</td>
<td>2.01 (1.57-2.44)</td>
<td><0.001</td>
<td>2.14 (1.73-2.67)</td>
<td><0.001</td>
</tr>
<tr>
<td>WMD decile</td>
<td>1.19 (1.15-1.22)</td>
<td><0.001</td>
<td>1.14 (1.11-1.19)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Logistic regression analysis of learning difficulties for preterm birth and increasing deprivation. (* Adjusted for maternal age, sex and ethnicity ** smoking, multiple birth, mode of delivery, birthweight and breastfeeding)

Logistic regression analysis of learning difficulties for preterm birth and increasing deprivation. (* Adjusted for maternal age, sex and ethnicity ** smoking, multiple birth, mode of delivery, birthweight and breastfeeding)

None declared

Professor Ulrika Ådén, MD, PhD Aijaz Farooqi², MD, PhD Karin Sävman³, Assoc professor Abrahamsson Thomas³, Md, PhD Lars Björklund⁵, Professor Magnus Domellöf², Assoc professor Anders Elfvin³, Visiting professor Fredrik Serenius⁶, Assoc professor Stellan Håkansson⁷, Professor Karin Källén³, Professor David Ley⁵, Assoc professor Erik Normann⁷, MD, PhD Petra Um-Bergström³, Professor Lena Hellström-Westas⁶, Professor Mikael Norman³

¹Karolinska Institutet, Stockholm, Sweden, ²Umeå University, Umeå, Sweden, ³Göteborg University, Göteborg, Sweden, ⁴Linköping University, Linköping, Sweden, ⁵Lund University, Lund, Sweden, ⁶Uppsala University, Uppsala, Sweden

BACKGROUND
Survival for extremely preterm infants has increased in Sweden and other countries. The latest study cohort (EXPRESS2, births in 2014-2016) showed significantly higher one-year survival without major neonatal morbidities among live births at 22-26 weeks than EXPRESS (births in 2004-2007)(1). We tested the hypothesis that neurodevelopmental outcome at 2 years of age improved between the study periods.

METHODS
All births at 22-26 weeks gestational age (n=2205) between April 1, 2004, and March 31, 2007 and between January 1, 2014, and December 31, 2016, in Sweden were studied (1). Follow up data from EXPRESS2 (2014-2016) collected according to the national guidelines at 2 years corrected age were obtained from the Swedish neonatal quality register. Out of 695 eligible survivors, neurosensory impairment (NSI; CP, visual and hearing impairment) was scored in 616 (89%) and neurodevelopmental impairment (NDI; CP, cognitive, language, motor, visual and hearing impairment) in 608 (87%) and compared with data from the EXPRESS 2004-2007 cohort where 456 out of 491 (93%) were assessed. Groups were compared with Chi-square test.

RESULTS
At 2 years in EXPRESS2, 35% had moderate-severe neurodevelopmental impairments, compared to 27% in EXPRESS and 12% in EXPRESS2 had moderate-severe neurosensory impairments compared to 7.5% in EXPRESS (see Table 1).

CONCLUSION
Improvements in neonatal survival and one year morbidity free survival were not paralleled by reduced rates of neurosensory or neurodevelopmental impairments at 2 years.

REFERENCES
(1) Norman M et al, JAMA 2019, PMID: 30912837
(2) Serenius F et al, JAMA 2013 PMID: 23632725
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>409 (89.7)</td>
<td>486 (78.8)</td>
<td>P<0.001</td>
<td>192 (42.1)</td>
<td>275 (45.2)</td>
<td>P<0.001</td>
</tr>
<tr>
<td>Mild</td>
<td>13 (2.9)</td>
<td>54 (8.9)</td>
<td></td>
<td>140 (30.7)</td>
<td>121 (19.9)</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>25 (5.5)</td>
<td>44 (7.1)</td>
<td></td>
<td>74 (16.2)</td>
<td>107 (17.6)</td>
<td></td>
</tr>
<tr>
<td>Severe</td>
<td>9 (2.0)</td>
<td>32 (5.2)</td>
<td></td>
<td>50 (11.0)</td>
<td>105 (17.2)</td>
<td></td>
</tr>
</tbody>
</table>

None declared